Primitive of Root of x squared minus a squared over x squared/Inverse Hyperbolic Cosine Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\sqrt {x^2 - a^2} } {x^2} \rd x = \arcosh \dfrac x a - \frac {\sqrt {x^2 - a^2} } x + C$

for $x^2 \ge a^2$.


Proof

Let:

\(\ds \int \frac {\sqrt {x^2 - a^2} } {x^2} \rd x\) \(=\) \(\ds \frac {-\sqrt {x^2 - a^2} } x + \ln \size {x + \sqrt {x^2 - a^2} } + C\) Primitive of $\dfrac 1 {\sqrt {x^2 - a^2} }$
\(\ds \) \(=\) \(\ds \frac {-\sqrt {x^2 - a^2} } x + \map \ln {x + \sqrt {x^2 - a^2} } + C\) as $x + \sqrt {x^2 - a^2} \ge 0$ for $x^2 \ge a^2$
\(\ds \) \(=\) \(\ds \map \ln {x + \sqrt {x^2 - a^2} } - \ln a - \frac {\sqrt {x^2 - a^2} } x + C\) subsuming $\ln a$ into constant of integration and rearranging
\(\ds \) \(=\) \(\ds \arcosh \dfrac x a - \frac {\sqrt {x^2 - a^2} } x + C\) Real Area Hyperbolic Cosine of x over a in Logarithm Form

$\blacksquare$


Also see


Sources