Primitive of Square of Sine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \sin^2 a x \rd x = \frac x 2 - \frac {\sin 2 a x} {4 a} + C$
Proof
\(\ds \int \sin^2 x \rd x\) | \(=\) | \(\ds \frac x 2 - \frac {\sin 2 x} 4 + C\) | Primitive of $\sin^2 x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \sin^2 a x \rd x\) | \(=\) | \(\ds \frac 1 a \paren {\frac {a x} 2 - \frac {\sin 2 a x} 4} + C\) | Primitive of Function of Constant Multiple | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac x 2 - \frac {\sin 2 a x} {4 a} + C\) | simplifying |
$\blacksquare$
Also see
- Primitive of $\cos^2 a x$
- Primitive of $\tan^2 a x$
- Primitive of $\cot^2 a x$
- Primitive of $\sec^2 a x$
- Primitive of $\csc^2 a x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sin a x$: $14.347$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Front endpapers: A Brief Table of Integrals: $58$.