Primitive of p x + q over Root of a x squared plus 2 b x plus c/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \dfrac {p x + q} {\sqrt {a x^2 + 2 b x + c} } \rd x = \dfrac p a \sqrt {a x^2 + 2 b x + c} + \paren {q - \dfrac {p b} a} \int \dfrac {\d x} {\sqrt {a x^2 + 2 b x + c} }$


Proof

\(\ds \int \dfrac {p x + q} {\sqrt {a x^2 + 2 b x + c} } \rd x\) \(=\) \(\ds p \int \dfrac x {\sqrt {a x^2 + 2 b x + c} } \rd x + q \int \dfrac {\d x} {\sqrt {a x^2 + 2 b x + c} }\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds p \paren {\frac {\sqrt {a x^2 + 2 b x + c} } a - \frac {2 b} {2 a} \int \frac {\d x} {\sqrt {a x^2 + 2 b x + c} } } + q \int \dfrac {\d x} {\sqrt {a x^2 + 2 b x + c} }\) Primitive of $\dfrac x {\sqrt {a x^2 + 2 b x + c} }$
\(\ds \) \(=\) \(\ds \dfrac p a \sqrt {a x^2 + 2 b x + c} + \paren {q - \dfrac {p b} a} \int \dfrac {\d x} {\sqrt {a x^2 + 2 b x + c} }\) simplifying

$\blacksquare$