Primitive of x over a x + b squared by p x + q/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x \rd x} {\paren {a x + b}^2 \paren {p x + q} } = \frac 1 {b p - a q} \paren {\frac q {b p - a q} \ln \size {\frac {a x + b} {p x + q} } + \frac x {a x + b} } + C$


Proof

\(\ds \int \frac {x \rd x} {\paren {a x + b}^2 \paren {p x + q} }\) \(=\) \(\ds \frac 1 {b p - a q} \paren {\frac q {b p - a q} \ln \size {\frac {a x + b} {p x + q} } - \frac b {a \paren {a x + b} } } + C\) Primitive of $\dfrac x {\paren {a x + b}^2 \paren {p x + q} }$
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \paren {\frac q {b p - a q} \ln \size {\frac {a x + b} {p x + q} } - \frac {a x + b} {a \paren {a x + b} } + \frac {a x} {a \paren {a x + b} } } + C\)
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \paren {\frac q {b p - a q} \ln \size {\frac {a x + b} {p x + q} } - \frac 1 a + \frac x {a x + b} } + C\)
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \paren {\frac q {b p - a q} \ln \size {\frac {a x + b} {p x + q} } + \frac x {a x + b} } + \paren {C - \frac 1 {a \paren {b p - a q} } }\)
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \paren {\frac q {b p - a q} \ln \size {\frac {a x + b} {p x + q} } + \frac x {a x + b} } + C\) subsuming constant

$\blacksquare$