Primitive of x squared by Cosine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int x^2 \cos a x \rd x = \frac {2 x \cos a x} {a^2} + \paren {\frac {x^2} a - \frac 2 {a^3} } \sin a x + C$
where $C$ is an arbitrary constant.
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds x^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds 2 x\) | Derivative of Power |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds \cos a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {\sin a x} a\) | Primitive of $\cos a x$ |
Then:
\(\ds \int x^2 \map \cos {a x} \rd x\) | \(=\) | \(\ds x^2 \paren {\frac {\sin a x} a} - \int \paren {2 x \frac {\sin a x} a} \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2 \sin a x} a - \frac 2 a \int x \sin a x \rd x + C\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^2 \sin a x} a - \frac 2 a \paren {\frac {\sin a x} {a^2} - \frac {x \cos a x} a} + C\) | Primitive of $x \sin a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 x \cos a x} {a^2} + \paren {\frac {x^2} a - \frac 2 {a^3} } \sin a x + C\) | simplification |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\cos a x$: $14.371$