Primitive of x squared by Root of a squared minus x squared/Also presented as

From ProofWiki
Jump to navigation Jump to search

Primitive of $x^2 \sqrt {a^2 - x^2}$: Also presented as

This result is also seen presented in the form:

$\ds \int x^2 \sqrt {a^2 - x^2} \rd x = \frac {a^4} 8 \arcsin \frac x a - \frac {x \sqrt {a^2 - x^2} \paren {a^2 - 2 x^2} } 8 + C$


Proof

\(\ds \int x^2 \sqrt {a^2 - x^2} \rd x\) \(=\) \(\ds -\frac {x \paren {\sqrt {a^2 - x^2} }^3} 4 + \frac {a^2 x \sqrt {a^2 - x^2} } 8 + \frac {a^4} 8 \arcsin \frac x a + C\) Primitive of $x^2 \sqrt {a^2 - x^2}$
\(\ds \) \(=\) \(\ds \frac {a^4} 8 \arcsin \frac x a + \frac {a^2 x \sqrt {a^2 - x^2} } 8 - \frac {x \paren {\sqrt {a^2 - x^2} }^3} 4 + C\) reversing the order for convenience
\(\ds \) \(=\) \(\ds \frac {a^4} 8 \arcsin \frac x a + \frac {a^2 x \sqrt {a^2 - x^2} - 2 x \paren {\sqrt {a^2 - x^2} }^3} 8 + C\)
\(\ds \) \(=\) \(\ds \frac {a^4} 8 \arcsin \frac x a + \frac {x \sqrt {a^2 - x^2} \paren {a^2 - 2 \paren {\sqrt {a^2 - x^2} }^2} } 8 + C\) Distributive Laws of Arithmetic
\(\ds \) \(=\) \(\ds \frac {a^4} 8 \arcsin \frac x a + \frac {x \sqrt {a^2 - x^2} \paren {a^2 - 2 \paren {a^2 - x^2} } } 8 + C\) simplifying
\(\ds \) \(=\) \(\ds \frac {a^4} 8 \arcsin \frac x a - \frac {x \sqrt {a^2 - x^2} \paren {a^2 - 2 x^2} } 8 + C\) arranging into required form

$\blacksquare$


Sources