Primitive of x squared by Root of a squared minus x squared/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^2 \sqrt {a^2 - x^2} \rd x = -\frac {x \paren {\sqrt {a^2 - x^2} }^3} 4 + \frac {a^2 x \sqrt {a^2 - x^2} } 8 + \frac {a^4} 8 \arcsin \frac x a + C$


Proof

\(\ds z\) \(=\) \(\ds x^2\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds 2 x\) Power Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \int x^2 \sqrt {a^2 - x^2} \rd x\) \(=\) \(\ds \int \frac {z \sqrt {a^2 - z} \rd z} {2 \sqrt z}\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac 1 2 \int \sqrt {z \paren {a^2 - z} } \rd z\) Primitive of Constant Multiple of Function


Recall:

\(\ds \int \sqrt {\paren {a x + b} \paren {p x + q} } \rd x\) \(=\) \(\ds \frac {2 a p x + b p + a q} {4 a p} \sqrt {\paren {a x + b} \paren {p x + q} } - \frac {\paren {b p - a q}^2} {8 a p} \int \frac {\d x} {\sqrt {\paren {a x + b} \paren {p x + q} } }\) Primitive of $\sqrt {\paren {a x + b} \paren {p x + q} }$


Then:

\(\ds \frac {2 a p x + b p + a q} {4 a p}\) \(=\) \(\ds \frac {2 \times 1 \times \paren {-1} z + 0 \times \paren {-1} + 1 \times a^2} {4 \times 1 \times \paren {-1} }\) setting $a \gets 1$, $b \gets 0$, $p \gets -1$, $q \gets a^2$, $x \gets z$
\(\ds \) \(=\) \(\ds \frac {-2 z + a^2} {-4}\) simplifying
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \frac {2 z - a^2} 4\) simplifying further


Then:

\(\ds \frac 1 2 \int \sqrt {z \paren {a^2 - z} } \rd z\) \(=\) \(\ds \frac 1 2 \paren {\frac {2 z - a^2} 4 \sqrt {z \paren {a^2 - z} } - \frac {\paren {0 \times \paren {-1} + 1 \times a^2}^2} {8 \times 1 \times \paren {-1} } \int \frac {\d z} {\sqrt {z \paren {a^2 - z} } } }\) setting $a \gets 1$, $b \gets 0$, $p \gets -1$, $q \gets a^2$, $x \gets z$
\(\ds \) \(=\) \(\ds \frac {2 z - a^2} 8 \sqrt {z \paren {a^2 - z} } + \frac {a^4} {16} \int \frac {\d z} {\sqrt {z \paren {a^2 - z} } }\) simplifying


Recall:

\(\ds \int \frac {\d x} {\sqrt {\paren {a x + b} \paren {p x + q} } }\) \(=\) \(\ds \dfrac {-1} {\sqrt {-a p} } \map \arcsin {\dfrac {2 a p x + b p + a q} {a q - b p} } + C\) Primitive of $\dfrac 1 {\sqrt {\paren {a x + b} \paren {p x + q} } }$ for $a > 0, p < 0$


Then:

\(\ds \frac {2 z - a^2} 8 \sqrt {z \paren {a^2 - z} } + \frac {a^4} {16} \int \frac {\d z} {\sqrt {z \paren {a^2 - z} } }\) \(=\) \(\ds \frac {2 z - a^2} 8 \sqrt {z \paren {a^2 - z} } + \frac {a^4} {16} \paren {\dfrac {-1} {\sqrt {-1 \times \paren {-1} } } \arcsin \frac {2 z - a^2} 4} + C\) from $(1)$, and $a \gets 1$, $b \gets 0$, $p \gets -1$, $q \gets a^2$, $x \gets z$
\(\ds \) \(=\) \(\ds \frac {2 z - a^2} 8 \sqrt {z \paren {a^2 - z} } + \frac {a^4} {16} \paren {-\arcsin \frac {2 z - a^2} 4} + C\) simplifying
\(\ds \) \(=\) \(\ds \frac {2 x^2 - a^2} 8 \sqrt {x^2 \paren {a^2 - x^2} } + \frac {a^4} {16} \paren {-\arcsin \frac {2 x^2 - a^2} 4} + C\) substituting $x^2$ back for $z$
\(\ds \) \(=\) \(\ds \frac {2 x^2 - 2 a^2 + a^2} 8 \sqrt {x^2 \paren {a^2 - x^2} } + \frac {a^4} {16} \paren {-\arcsin \frac {2 x^2 - a^2} 4} + C\)
\(\ds \) \(=\) \(\ds -\frac {a^2 - x^2} 4 x \sqrt {a^2 - x^2} + \frac {a^2 x \sqrt {a^2 - x^2} } 8 + \frac {a^4} {16} \paren {-\arcsin \frac {2 x^2 - a^2} 4} + C\) rearranging
\(\ds \) \(=\) \(\ds -\frac {x \paren {\sqrt {a^2 - x^2} }^3} 4 + \frac {a^2 x \sqrt {a^2 - x^2} } 8 + \frac {a^4} {16} \paren {-\arcsin \frac {2 x^2 - a^2} 4} + C\) simplifying




Also see