Primitive of x squared by Root of x squared plus a squared/Also presented as

From ProofWiki
Jump to navigation Jump to search

Primitive of $x^2 \sqrt {x^2 + a^2}$: Also presented as

This result is also seen presented in the form:

$\ds \int x^2 \sqrt {a^2 + x^2} \rd x = \frac {x \paren {a^2 + 2 x^2} \sqrt {a^2 + x^2} } 8 - \frac {a^4} 8 \arsinh \frac x a + C$


Proof

\(\ds \int x^2 \sqrt {x^2 + a^2} \rd x\) \(=\) \(\ds \frac {x \paren {\sqrt {x^2 + a^2} }^3} 4 - \frac {a^2 x \sqrt {x^2 + a^2} } 8 - \frac {a^4} 8 \map \ln {x + \sqrt {x^2 + a^2} } + C\) Primitive of $x^2 \sqrt {x^2 + a^2}$
\(\ds \) \(=\) \(\ds \frac {2 x \paren {\sqrt {x^2 + a^2} }^3 - a^2 x \sqrt {x^2 + a^2} } 8 + \frac {a^4} 8 \arsinh \frac x a + C\) $\arsinh \dfrac x a$ in Logarithm Form
\(\ds \) \(=\) \(\ds \frac {2 x \paren {x^2 + a^2} \sqrt {x^2 + a^2} - a^2 x \sqrt {x^2 + a^2} } 8 + \frac {a^4} 8 \arsinh \frac x a + C\)
\(\ds \) \(=\) \(\ds \frac {x \paren {\paren {2 x^2 + 2 a^2} - a^2} \sqrt {x^2 + a^2} } 8 + \frac {a^4} 8 \arsinh \frac x a + C\)
\(\ds \) \(=\) \(\ds \frac {x \paren {a^2 + 2 x^2} \sqrt {a^2 + x^2} } 8 + \frac {a^4} 8 \arsinh \frac x a + C\)

$\blacksquare$


Sources