Primitive of x squared over x squared minus a squared/Inverse Hyperbolic Cotangent Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^2 \rd x} {x^2 - a^2} = x - a \coth^{-1} \frac x a + C$

for $x^2 > a^2$.


Proof

Let:

\(\ds \int \frac {x^2 \rd x} {x^2 - a^2}\) \(=\) \(\ds \int \frac {x^2 - a^2 + a^2} {x^2 - a^2} \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {x^2 - a^2} {x^2 - a^2} \rd x + \int \frac {a^2} {x^2 - a^2} \rd x\)
\(\ds \) \(=\) \(\ds \int \d x + a^2 \int \frac {\d x} {x^2 - a^2}\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds x + a^2 \int \frac {\d x} {x^2 - a^2} + C\) Primitive of Constant
\(\ds \) \(=\) \(\ds x + a^2 \paren {-\frac 1 a \coth^{-1} {\frac x a} } + C\) Primitive of $\dfrac 1 {x^2 - a^2}$: $\coth^{-1}$ form
\(\ds \) \(=\) \(\ds x - a \coth^{-1} {\frac x a} + C\) simplifying

$\blacksquare$