Probability Density Function of Student's t-Distribution

From ProofWiki
Jump to navigation Jump to search

Definition

Let $X$ be a continuous random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.

Let $X$ have a Student's $t$-distribution with $k$ degrees of freedom.

Then the probability density function of $X$ is given by:

$\map {f_X} x = \dfrac {\map \Gamma {\frac {k + 1} 2} } {\sqrt {\pi k} \map \Gamma {\frac k 2} } \paren {1 + \dfrac {x^2} k}^{-\frac {k + 1} 2}$

where $\Gamma$ denotes the gamma function.


Proof




Sources