Probability Generating Function of Negative Binomial Distribution
Jump to navigation
Jump to search
Theorem
Type 1
Let $X$ be a discrete random variable with the type 1 negative binomial distribution with parameters $n$ and $p$.
Then the p.g.f. of $X$ is:
- $\ds \map {\Pi_X} s = \paren {\frac {p s} {1 - q s} }^n$
where $q = 1 - p$.
Type 2
Let $X$ be a discrete random variable with the type $2$ negative binomial distribution with parameters $n$ and $p$.
Then the p.g.f. of $X$ is:
- $\map {\Pi_X} s = \paren {\dfrac q {1 - p s} }^n$
where $q = 1 - p$.