Product Functor is Functor

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf C$ be a metacategory with binary products.

Let $\mathbf C \times \mathbf C$ be the product category of $\mathbf C$ with itself.


Let $\times: \mathbf C \times \mathbf C \to \mathbf C$ be the product functor.


Then $\times$ is a functor.


Proof

For any pair of objects $\tuple {C, D}$:

\(\ds \map \times {\operatorname{id}_{\tuple {C, D} } }\) \(=\) \(\ds \map \times {\operatorname{id}_C, \operatorname{id}_D}\) Definition of $\operatorname{id}_{\left({C, D}\right)}$
\(\ds \) \(=\) \(\ds \operatorname{id}_C \times \operatorname{id}_D\) Definition of Product Functor
\(\ds \) \(=\) \(\ds \operatorname{id}_{\paren {C \mathop \times D} }\) Identity Morphism of Product

Thus $\times$ preserves identity morphisms.


For composable morphisms $\tuple {f, f'}$ and $\tuple {g, g'}$ of $\mathbf C \times \mathbf C$:

\(\ds \map \times {\tuple {g, g'} \circ \tuple {f, f'} }\) \(=\) \(\ds \map \times {g \circ f, g' \circ f'}\) Definition of $\circ$ in a product category
\(\ds \) \(=\) \(\ds \paren {g \circ f} \times \paren {g' \circ f'}\) Definition of Product Functor
\(\ds \) \(=\) \(\ds \paren {g \times g'} \circ \paren {f \times f'}\) Product of Composite Morphisms
\(\ds \) \(=\) \(\ds \map \times {g, g'} \circ \map \times {f, f'}\) Definition of Product Functor


Hence $\times$ is a functor.

$\blacksquare$