Product Rule for Derivatives/Proof
Jump to navigation
Jump to search
Theorem
Let $\map f x, \map j x, \map k x$ be real functions defined on the open interval $I$.
Let $\xi \in I$ be a point in $I$ at which both $j$ and $k$ are differentiable.
Let $\map f x = \map j x \map k x$.
Then:
- $\map {f'} \xi = \map j \xi \map {k'} \xi + \map {j'} \xi \map k \xi$
It follows from the definition of derivative that if $j$ and $k$ are both differentiable on the interval $I$, then:
- $\forall x \in I: \map {f'} x = \map j x \map {k'} x + \map {j'} x \map k x$
Proof
\(\ds \map {f'} \xi\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map f {\xi + h} - \map f \xi} h\) | Definition of Derivative | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map j {\xi + h} \map k {\xi + h} - \map j \xi \map k \xi} h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map j {\xi + h} \map k {\xi + h} - \map j {\xi + h} \map k \xi + \map j {\xi + h} \map k \xi - \map j \xi \map k \xi} h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \paren {\map j {\xi + h} \frac {\map k {\xi + h} - \map k \xi} h + \frac {\map j {\xi + h} - \map j \xi} h \map k \xi}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \paren { \map j {\xi + h} \frac {\map k {\xi + h} - \map k \xi} h } + \lim_{h \mathop \to 0} \paren { \frac {\map j {\xi + h} - \map j \xi} h \map k \xi }\) | Sum Rule for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \paren { \map j {\xi + h} } \lim_{h \mathop \to 0} \paren { \frac {\map k {\xi + h} - \map k \xi} h } + \lim_{h \mathop \to 0} \paren { \frac {\map j {\xi + h} - \map j \xi} h } \lim_{h \mathop \to 0} \paren { \map k \xi }\) | Product Rule for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \map j \xi \map {k'} \xi + \map {j'} \xi \map k \xi\) | Definition of Derivative |
Note that $\map j {\xi + h} \to \map j \xi$ as $h \to 0$ because, from Differentiable Function is Continuous‎, $j$ is continuous at $\xi$.
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation: Product
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 10.9 \ \text{(ii)}$