Product of Commuting Idempotent Elements is Idempotent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be a semigroup.

Let $a, b \in S$ be idempotent elements of $S$.

Let $a$ and $b$ commute:

$a \circ b = b \circ a$


Then $a \circ b$ is idempotent.


Proof

From Semigroup Axiom $\text S 0$: Closure we take it for granted that $\struct {S, \circ}$ is closed under $\circ$.

Hence:

\(\ds \paren {a \circ b} \circ \paren {a \circ b}\) \(=\) \(\ds \paren {a \circ \paren {b \circ a} } \circ b\) Semigroup Axiom $\text S 1$: Associativity
\(\ds \) \(=\) \(\ds \paren {a \circ \paren {a \circ b} } \circ b\) $a$ and $b$ commute
\(\ds \) \(=\) \(\ds \paren {a \circ a} \circ \paren {b \circ b}\) Semigroup Axiom $\text S 1$: Associativity
\(\ds \) \(=\) \(\ds a \circ b\) $a$ and $b$ are idempotent by the premise

Thus $a \circ b$ is idempotent.

$\blacksquare$