Product to n of Product to Index

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \prod_{i \mathop = 0}^n \prod_{j \mathop = 0}^i a_i a_j = \prod_{i \mathop = 0}^n {a_i}^{n + 2}$


Proof

Let:

\(\ds P_1\) \(:=\) \(\ds \prod_{i \mathop = 0}^n \prod_{j \mathop = 0}^i a_i a_j\)
\(\ds P_2\) \(:=\) \(\ds \prod_{i \mathop = 0}^n \prod_{j \mathop = i}^n a_i a_j\)


Then:

\(\ds P_1 P_2\) \(=\) \(\ds \paren {\prod_{i \mathop = 0}^n \prod_{j \mathop = 0}^i a_i a_j} \paren {\prod_{i \mathop = 0}^n \prod_{j \mathop = i}^n a_i a_j}\)
\(\ds \) \(=\) \(\ds \prod_{i \mathop = 0}^n \paren {\paren {\prod_{j \mathop = 0}^i a_i a_j} \paren {\prod_{j \mathop = i}^n a_i a_j} }\)
\(\ds \) \(=\) \(\ds \prod_{i \mathop = 0}^n \paren {\paren {\prod_{j \mathop = 0}^n a_j a_j} {a_i}^2}\) Product of Products over Overlapping Domains
\(\ds \) \(=\) \(\ds \prod_{i \mathop = 0}^n \paren { {a_i}^{n + 1} \paren {\prod_{j \mathop = 0}^n a_j} {a_i}^2}\)
\(\ds \) \(=\) \(\ds \paren {\prod_{i \mathop = 0}^n {a_i}^{n + 1} } \paren {\prod_{j \mathop = 0}^n \paren {\prod_{j \mathop = 0}^n a_j} {a_i}^2}\)
\(\ds \) \(=\) \(\ds \paren {\prod_{i \mathop = 0}^n {a_i}^{n + 1} } \paren {\prod_{j \mathop = 0}^n {a_i}^{n + 1} {a_i}^2}\)
\(\ds \) \(=\) \(\ds \prod_{i \mathop = 0}^n {a_i}^{2 n + 4}\)
\(\ds \leadsto \ \ \) \(\ds P_1\) \(=\) \(\ds \prod_{i \mathop = 0}^n {a_i}^{n + 2}\)

$\blacksquare$


Sources