Proof by Cases/Formulation 2/Forward Implication

From ProofWiki
Jump to navigation Jump to search

Theorem

$\vdash \paren {\paren {p \implies r} \land \paren {q \implies r} } \implies \paren {\paren {p \lor q} \implies r}$


Proof 1

By the tableau method of natural deduction:

$\vdash \paren {\paren {p \implies r} \land \paren {q \implies r} } \implies \paren {\paren {p \lor q} \implies r} $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {p \implies r} \land \paren {q \implies r}$ Assumption (None)
2 1 $\paren {p \lor q} \implies r$ Sequent Introduction 1 Proof by Cases: Formulation 1: Forward Implication
3 $\paren {\paren {p \implies r} \land \paren {q \implies r} } \implies \paren {\paren {p \lor q} \implies r}$ Rule of Implication: $\implies \II$ 1 – 2 Assumption 1 has been discharged

$\blacksquare$


Proof by Truth Table

We apply the Method of Truth Tables to the proposition.

As can be seen by inspection, the truth values under the main connective are true for all boolean interpretations.

$\begin{array}{|ccccccc|c|ccccc|} \hline ((p & \implies & r) & \land & (q & \implies & r)) & \implies & ((p & \lor & q) & \implies & r) \\ \hline \F & \T & \F & \T & \F & \T & \F & \T & \F & \F & \F & \T & \F \\ \F & \T & \T & \T & \F & \T & \T & \T & \F & \F & \F & \T & \T \\ \F & \T & \F & \F & \T & \F & \F & \T & \F & \T & \T & \F & \F \\ \F & \T & \T & \T & \T & \T & \T & \T & \F & \T & \T & \T & \T \\ \T & \F & \F & \F & \F & \T & \F & \T & \T & \T & \F & \F & \F \\ \T & \T & \T & \T & \F & \T & \T & \T & \T & \T & \F & \T & \T \\ \T & \F & \F & \F & \T & \F & \F & \T & \T & \T & \T & \F & \F \\ \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T \\ \hline \end{array}$

$\blacksquare$


Sources