Properties of Mapping on Class of All Ordinals

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\On$ denote the class of all ordinals.

Let $F$ be a mapping on $\On$.

For $\alpha \in \On$, let $F \restriction \alpha$ denote the restriction of $F$ to $\alpha$.

Then:

\((1)\)   $:$      \(\ds F \restriction 0 \)   \(\ds = \)   \(\ds 0 \)      
\((2)\)   $:$   For a given limit ordinal $\lambda$:       \(\ds F \restriction \lambda \)   \(\ds = \)   \(\ds \bigcup_{\alpha \mathop < \lambda} F \restriction \alpha \)      


Proof




Sources