Properties of Matrix Exponential
Jump to navigation
Jump to search
Theorem
In the following:
- $\mathbf A$ and $\mathbf B$ are constant square matrices of order $m$ for some $m \in \Z_{\ge 1}$
- $\mathbf P$ is a nonsingular square matrix of order $m$
- $t, s \in \R$ are arbitrary real numbers.
The matrix exponential $e^{\mathbf A t}$ has the following properties:
Derivative of Matrix Exponential
- $\dfrac \d {\d t} e^{\mathbf A t} = \mathbf A e^{\mathbf A t}$
Determinant of Matrix Exponential is Non-Zero
- $\det e^{\mathbf A t} \ne 0$
where $\det$ denotes the determinant.
Same-Matrix Product of Matrix Exponentials
- $e^{\mathbf A t} e^{\mathbf A s} = e^{\mathbf A \paren {t + s} }$
Inverse of Matrix Exponential
- $\paren {e^{\mathbf A t} }^{-1} = e^{-\mathbf A t}$
where $\paren {e^{\mathbf A t} }^{-1}$ denotes the inverse of $e^{\mathbf A t}$.
Product with Matrix Exponential of Commutative Matrices
Let $\mathbf A \mathbf B = \mathbf B \mathbf A$.
Then:
- $e^{\mathbf A t} \mathbf B = \mathbf B e^{\mathbf A t}$
Matrix Exponential of Sum of Commutative Matrices
Let $\mathbf A \mathbf B = \mathbf B \mathbf A$.
Then:
- $e^{\mathbf A t} e^{\mathbf B t} = e^{\paren {\mathbf A + \mathbf B} t}$
Series Expansion of Matrix Exponential
- $\ds e^{\mathbf A t} = \sum_{n \mathop = 0}^\infty \frac {t^n} {n!} \mathbf A^n$
Decomposition of Matrix Exponential
- $e^{\mathbf P \mathbf A \mathbf P^{-1} } = \mathbf P e^{\mathbf A} \mathbf P^{-1}$