Quaternion Group/Complex Matrices/Cayley Table
Jump to navigation
Jump to search
Cayley Table for Quaternion Group
The Cayley table for the quaternion group:
- $Q = \Dic 2 = \set {\mathbf 1, -\mathbf 1, \mathbf i, -\mathbf i, \mathbf j, -\mathbf j, \mathbf k, -\mathbf k}$
under the operation of conventional matrix multiplication, where:
- $\mathbf 1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf i = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \qquad \mathbf j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \mathbf k = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$
can be presented as:
- $\begin{array}{r|rrrrrrrr} & \mathbf 1 & \mathbf i & -\mathbf 1 & -\mathbf i & \mathbf j & \mathbf k & -\mathbf j & -\mathbf k \\ \hline \mathbf 1 & \mathbf 1 & \mathbf i & -\mathbf 1 & -\mathbf i & \mathbf j & \mathbf k & -\mathbf j & -\mathbf k \\ \mathbf i & \mathbf i & -\mathbf 1 & -\mathbf i & \mathbf 1 & \mathbf k & -\mathbf j & -\mathbf k & \mathbf j \\ -\mathbf 1 & -\mathbf 1 & -\mathbf i & \mathbf 1 & \mathbf i & -\mathbf j & -\mathbf k & \mathbf j & \mathbf k \\ -\mathbf i & -\mathbf i & \mathbf 1 & \mathbf i & -\mathbf 1 & -\mathbf k & \mathbf j & \mathbf k & -\mathbf j \\ \mathbf j & \mathbf j & -\mathbf k & -\mathbf j & \mathbf k & -\mathbf 1 & \mathbf i & \mathbf 1 & -\mathbf i \\ \mathbf k & \mathbf k & \mathbf j & -\mathbf k & -\mathbf j & -\mathbf i & -\mathbf 1 & \mathbf i & \mathbf 1 \\ -\mathbf j & -\mathbf j & \mathbf k & \mathbf j & -\mathbf k & \mathbf 1 & -\mathbf i & -\mathbf 1 & \mathbf i \\ -\mathbf k & -\mathbf k & -\mathbf j & \mathbf k & \mathbf j & \mathbf i & \mathbf 1 & -\mathbf i & -\mathbf 1 \end{array}$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $6$: An Introduction to Groups: Exercise $14$