Real Multiplication Identity is One/Corollary
Jump to navigation
Jump to search
Theorem
- $\forall x \in \R_{\ne 0}: x \times y = x \implies y = 1$
Proof
\(\ds x \times y\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac 1 x \times \paren {x \times y}\) | \(=\) | \(\ds \frac 1 x \times x\) | as long as $x \ne 0$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\frac 1 x \times x} \times y\) | \(=\) | \(\ds \frac 1 x \times x\) | Real Number Axiom $\R \text M1$: Associativity of Multiplication | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1 \times y\) | \(=\) | \(\ds 1\) | Real Number Axiom $\R \text M4$: Inverses for Multiplication | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds 1\) | Real Multiplication Identity is One |
$\blacksquare$
Sources
- 2000: James R. Munkres: Topology (2nd ed.) ... (previous) ... (next): $1$: Set Theory and Logic: $\S 4$: The Integers and the Real Numbers: Exercise $1 \ \text{(i)}$