Real Number to Negative Power/Positive Integer
Jump to navigation
Jump to search
Theorem
Let $r \in \R_{> 0}$ be a (strictly) positive real number.
Let $n \in \Z_{\ge 0}$ be a positive integer.
Let $r^n$ be defined as $r$ to the power of $n$.
Then:
- $r^{-n} = \dfrac 1 {r^n}$
Proof
Proof by induction on $m$:
For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition:
- $r^{-n} = \dfrac 1 {r^n}$
$\map P 0$ is the case:
\(\ds r^{-0}\) | \(=\) | \(\ds r^0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | Definition of Integer Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {r^0}\) | Definition of Integer Power |
Basis for the Induction
$\map P 1$ is the case:
\(\ds r^{-1}\) | \(=\) | \(\ds \dfrac {r^{-1 + 1} } r\) | Definition of Integer Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {r^0} r\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 r\) | Definition of Integer Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {r^1}\) | Definition of Integer Power |
This is our basis for the induction.
Induction Hypothesis
Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is our induction hypothesis:
- $r^{- k} = \dfrac 1 {r^k}$
Then we need to show:
- $r^{- \paren {k + 1}\ } = \dfrac 1 {r^{k + 1} }$
Induction Step
This is our induction step:
\(\ds r^{- \paren {k + 1} }\) | \(=\) | \(\ds \dfrac {r^{-\paren {k + 1} + 1} } r\) | Definition of Integer Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {r^{-k} } r\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {r^k \times r}\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {r^{k + 1} }\) | Definition of Integer Power |
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \Z_{\ge 0}: r^{-n} = \dfrac 1 {r^n}$
$\blacksquare$