Reciprocal of Complex Exponential
Jump to navigation
Jump to search
Theorem
Let $z \in \C$.
Let $\exp$ denote the complex exponential function.
Then:
- $\dfrac 1 {\map \exp z} = \map \exp {-z}$
Proof
\(\ds \map \exp {-z}\) | \(=\) | \(\ds \dfrac {\map \exp {-z} } {\map \exp 0}\) | as $\map \exp 0 = 1$ by Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \exp {-z} } {\map \exp {z - z} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \exp {-z} } {\map \exp z \, \map \exp {-z} }\) | Exponential of Sum: Complex Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {\map \exp z}\) |
$\blacksquare$
Sources
- 2001: Christian Berg: Kompleks funktionsteori: $\S 1.5$