Reciprocal times Derivative of Gamma Function/Examples/Sum of Reciprocal of 1 + 2k Alternating in Sign

From ProofWiki
Jump to navigation Jump to search

Example of Use of Reciprocal times Derivative of Gamma Function

$\ds \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + 2 k} = 1 - \dfrac \pi 4$


Proof

\(\ds 2 b \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {a + b k}\) \(=\) \(\ds \map \psi {\dfrac a {2 b} + 1} - \map \psi {\dfrac a {2 b} + \dfrac 1 2}\) Reciprocal times Derivative of Gamma Function: Corollary $2$
\(\ds \leadsto \ \ \) \(\ds 4 \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + 2 k}\) \(=\) \(\ds \map \psi {\dfrac 1 4 + 1} - \map \psi {\dfrac 1 4 + \dfrac 1 2}\) $a := 1$ and $b := 2$
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + 2 k}\) \(=\) \(\ds \dfrac {\map \psi {\dfrac 5 4} - \map \psi {\dfrac 3 4} } 4\) dividing both sides by $4$
\(\ds \) \(=\) \(\ds \dfrac {\paren {-\gamma - 3 \ln 2 - \dfrac \pi 2 + 4} - \paren {-\gamma - 3 \ln 2 + \dfrac \pi 2} } 4\) Digamma Function of Five Fourths and Digamma Function of Three Fourths
\(\ds \) \(=\) \(\ds 1 - \dfrac \pi 4\) grouping terms

$\blacksquare$