Reciprocal times Derivative of Gamma Function/Examples/Sum of Reciprocal of 1 + k Alternating in Sign

From ProofWiki
Jump to navigation Jump to search

Example of Use of Reciprocal times Derivative of Gamma Function

$\ds \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + k} = 1 - \ln 2$


Proof

\(\ds 2 b \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {a + b k}\) \(=\) \(\ds \map \psi {\dfrac a {2 b} + 1} - \map \psi {\dfrac a {2 b} + \dfrac 1 2 }\) Reciprocal times Derivative of Gamma Function: Corollary $2$
\(\ds \leadsto \ \ \) \(\ds 2 \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + k}\) \(=\) \(\ds \map \psi {\dfrac 1 2 + 1} - \map \psi {\dfrac 1 2 + \dfrac 1 2}\) $a := 1$ and $b := 1$
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + k}\) \(=\) \(\ds \dfrac {\map \psi {\dfrac 3 2 } - \map \psi 1 } 2\) dividing both sides by $2$
\(\ds \) \(=\) \(\ds \dfrac {\paren {-\gamma - 2 \ln 2 + 2} - \paren {-\gamma} } 2\) Digamma Function of Three Halves and Digamma Function of One
\(\ds \) \(=\) \(\ds 1 - \ln 2\) grouping terms

$\blacksquare$