Regression Coefficients of Normally Distributed Random Variable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a random variable.

Let $x$ be a given value of $X$.


Let $Y$ be a random variable with a normal distribution.

Let the variance $\sigma^2$ of $Y$ (usually unknown) be independent of $x$.


Let $S$ be a sample of $n$ independent pairs of observations $\tuple {x_i, y_i}$ for $i = 1, 2, \ldots, n$.


The maximum likelihood estimators $\beta_0$ and $\beta_1$ are given by:

\(\ds \beta_1\) \(=\) \(\ds \dfrac {\ds \sum_i \paren {x_i - \overline x} \paren {y_i - \overline y} } {\ds \sum_i \paren {x_1 - \overline x}^2}\)
\(\ds \beta_0\) \(=\) \(\ds \overline y - \beta_1 \overline x\)

where:

\(\ds \overline x\) \(=\) \(\ds \sum_i \dfrac {x_i} n\)
\(\ds \overline y\) \(=\) \(\ds \sum_i \dfrac {y_i} n\)


Proof

The maximum likelihood estimators are obtained by the method of least squares.

That is, the aim is to minimize $\ds \sum_i \paren {y_i - \beta_0 - \beta_1 x_i}^2$.




Sources