Relation/Examples/Ordering on Arbitrary Sets of Integers/Not Many-to-One

From ProofWiki
Jump to navigation Jump to search

Example of Relation which is not Many-to-One

Let $A = \set {1, 2, 3, 4}$ and $B = \set {1, 2, 3}$ be sets of integers.

Consider the following diagram, where:

$A$ runs along the top
$B$ runs down the left hand side
a relation $\mathcal R$ between $A$ and $B$ is indicated by marking with $\bullet$ every ordered pair $\tuple {a, b} \in A \times B$ which is in the truth set of $\mathcal R$
$\begin{array}{r|rrrr} A \times B & 1 & 2 & 3 & 4 \\ \hline 1 & \bullet & \bullet & \bullet & \circ \\ 2 & \bullet & \bullet & \circ & \circ \\ 3 & \bullet & \circ & \circ & \circ \\ \end{array}$

This relation $\mathcal R$ can be described as:

$\mathcal R = \set {\tuple {x, y} \in A \times B: x + y \le 4}$


$\mathcal R$ is not a many-to-one relation.


Proof

For example we have:

$\tuple {1, 1} \in \mathcal R$

and:

$\tuple {1, 2} \in \mathcal R$

Hence $\mathcal R$ is not many-to-one by definition.

$\blacksquare$


Sources