Relative Complement inverts Subsets/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $A \subseteq S, B \subseteq S$ be subsets of $S$.


Then:

$A \subseteq B \iff \relcomp S B \subseteq \relcomp S A$

where $\complement_S$ denotes the complement relative to $S$.


Proof

Sufficient Condition

Let $A \subseteq B$.

Then:

\(\ds x\) \(\in\) \(\ds \relcomp S B\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds S \setminus B\) Definition of Relative Complement
\(\ds \leadsto \ \ \) \(\ds x\) \(\notin\) \(\ds B\) Definition of Set Difference
\(\ds \leadsto \ \ \) \(\ds x\) \(\notin\) \(\ds A\) Definition of Subset
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds S \setminus A\) Definition of Set Difference
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds \relcomp S A\) Definition of Relative Complement
\(\ds \leadsto \ \ \) \(\ds \relcomp S B\) \(\subseteq\) \(\ds \relcomp S A\) Definition of Subset

$\Box$


Necessary Condition

\(\ds \relcomp S B\) \(\subseteq\) \(\ds \relcomp S A\)
\(\ds \leadsto \ \ \) \(\ds \relcomp S {\relcomp S A}\) \(\subseteq\) \(\ds \relcomp S {\relcomp S B}\) from Sufficient Condition
\(\ds \leadsto \ \ \) \(\ds A\) \(\subseteq\) \(\ds B\) Relative Complement of Relative Complement

$\blacksquare$