Relative Pseudocomplement Preserves Order

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \vee, \wedge, \preceq}$ be a Brouwerian lattice.

Let $a, b, c \in S$.

Let $b \preceq c$.


Then

$a \to b \preceq a \to c$

where $x \to y$ denotes the relative pseudocomplement of $x$ with respect to $y$.


Proof

We have:

\(\ds a \to b\) \(=\) \(\ds \max \set {a \wedge x : x \in S : a \wedge x \preceq b}\) Definition of Relative Pseudocomplement
\(\ds \) \(\preceq\) \(\ds \max \set {a \wedge x : x \in S : a \wedge x \preceq c}\) Finer Supremum Precedes Supremum
\(\ds \) \(=\) \(\ds a \to c\) Definition of Relative Pseudocomplement

$\blacksquare$