Restriction to Subset of Strict Total Ordering is Strict Total Ordering

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set or class.

Let $\prec$ be a strict total ordering on $A$.

Let $T$ be a subset or subclass of $A$.


Then the restriction of $\prec$ to $B$ is a strict total ordering of $B$.


Proof

Follows from:

Restriction of Transitive Relation is Transitive
Restriction of Antireflexive Relation is Antireflexive
Restriction of Connected Relation is Connected

$\blacksquare$