Reverse Triangle Inequality/Seminormed Vector Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {K, +, \circ}$ be a division ring with norm $\norm {\,\cdot\,}_K$.

Let $X$ be a vector space over $K$.

Let $p$ be a seminorm on $X$.


Then:

$\forall x, y \in X : \size {\map p x - \map p y} \le \map p {x - y}$




Proof

We have:

\(\ds \map p x - \map p y\) \(=\) \(\ds \map p {x - y + y} - \map p y\)
\(\ds \) \(\le\) \(\ds \map p {x - y} + \map p y - \map p y\) Seminorm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(=\) \(\ds \map p {x - y}\)


We also have:

\(\ds \map p y - \map p x\) \(=\) \(\ds \map p {y - x + x} - \map p x\)
\(\ds \) \(\le\) \(\ds \map p {y - x} + \map p x - \map p x\) Seminorm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(=\) \(\ds \map p {y - x}\)
\(\ds \) \(=\) \(\ds \norm {-1}_K \map p {x - y}\) Seminorm Axiom $\text N 2$: Positive Homogeneity
\(\ds \) \(=\) \(\ds \map p {x - y}\) Norm of Negative of Unity of Division Ring


Therefore:

$-\map p {x - y} \le \map p x - \map p y \le \map p {x - y}$



In view of Definition of Absolute Value, the claim is proved.

$\blacksquare$