Rising Sum of Binomial Coefficients/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{j \mathop = 0}^m \binom {n + j} n = \binom {n + m + 1} {n + 1} = \binom {n + m + 1} m$


Direct Proof

We have:

\(\ds \binom {n + j} n\) \(=\) \(\ds \binom {n + j} {\left({n + j}\right) - n}\) Symmetry Rule for Binomial Coefficients
\(\ds \) \(=\) \(\ds \binom {n + j} j\)

The result follows from Sum of $\dbinom {r + k} k$ up to $n$.

$\blacksquare$