Roots of Complex Number/Examples/Cube Roots of 2+11i

From ProofWiki
Jump to navigation Jump to search

Example of Roots of Complex Number

The complex cube roots of $2 + 11 i$ are given by:

$\paren {2 + 11 i}^{1/3} = \set {2 + i, -1 + \dfrac {\sqrt 3} 2 + i \paren {-\dfrac 1 2 - \sqrt 3 }, -1 - \dfrac {\sqrt 3} 2 + i \paren {-\dfrac 1 2 + \sqrt 3}}$


Proof

Let $z^3 = 2 + 11 i = \paren {p + iq}^3$.

Then:

\(\ds \paren {p + iq}^3\) \(=\) \(\ds 2 + 11 i\)
\(\ds \leadsto \ \ \) \(\ds p^3 + 3 i p^2 q - 3 p q^2 - i q^3\) \(=\) \(\ds 2 + 11 i\)
\(\ds \leadsto \ \ \) \(\ds p^3 - 3 p q^2\) \(=\) \(\ds 2\)
\(\ds 3 p^2 q - q^3\) \(=\) \(\ds 11\)


From this we have:

\(\ds p^3 - 3 p q^2\) \(=\) \(\ds 2\)
\(\ds \leadsto \ \ \) \(\ds \frac {p^3} {q^3} - \frac {3 p} q\) \(=\) \(\ds \frac 2 {q^3}\)
\(\ds \leadsto \ \ \) \(\ds \frac {2 p^3} {q^3} - \frac {6 p} q\) \(=\) \(\ds \frac 4 {q^3}\)

and:

\(\ds 3 p^2 q - q^3\) \(=\) \(\ds 11\)
\(\ds \leadsto \ \ \) \(\ds \frac {3 p^2} {q^2} - 1\) \(=\) \(\ds \frac {11} {q^3}\)


Thus:

\(\ds \frac {2 p^3} {q^3} - \frac {6 p} q\) \(=\) \(\ds \frac 4 {q^3}\)
\(\ds \leadsto \ \ \) \(\ds \frac {2 p^3} {q^3} - \frac {6 p} q\) \(=\) \(\ds \dfrac 4 {11} \paren {\frac {3 p^2} {q^2} - 1 }\)
\(\ds \leadsto \ \ \) \(\ds 2 \paren {p/q}^3 - \dfrac{12} {11} \paren {p/q}^2 - 6 \paren {p/q} + \dfrac 4 {11}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 11 \paren {p/q}^3 - 6 \paren {p/q}^2 - 33 \paren {p/q} + 2\) \(=\) \(\ds 0\) multiplying by $\dfrac {11} 2$


Let $w = \dfrac p q$:

\(\ds 11 w^3 - 6 w^2 - 33 w + 2\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {w - 2} \paren {11w^2 + 16 w - 1}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds w = \dfrac p q\) \(=\) \(\ds 2 \textrm { or } \dfrac {-8 \pm 5 \sqrt 3 } {11 }\) Quadratic Formula on $11w^2 + 16 w - 1$


Putting $\dfrac p q = 2$ leads to::

$p = 2q$

and hence:

\(\ds 3 p^2 q - q^3\) \(=\) \(\ds 11\)
\(\ds \leadsto \ \ \) \(\ds 12 q^3 - q^3\) \(=\) \(\ds 11\)
\(\ds \leadsto \ \ \) \(\ds 11 q^3\) \(=\) \(\ds 11\)
\(\ds \leadsto \ \ \) \(\ds q\) \(=\) \(\ds 1 \textrm { or } -\dfrac 1 2 \pm i \dfrac {\sqrt 3} 2\) Cube Roots of Unity


So this gives:

$z = \begin {cases} 2 + i \\ -1 + \dfrac {\sqrt 3} 2 + i \paren {-\dfrac 1 2 - \sqrt 3 } \\ -1 - \dfrac {\sqrt 3} 2 + i \paren {-\dfrac 1 2 + \sqrt 3} \end{cases}$

$\blacksquare$