Rule of Transposition/Formulation 2/Forward Implication/Proof
Jump to navigation
Jump to search
Theorem
![]() | This page has been identified as a candidate for refactoring of basic complexity. In particular: A layer is missing here Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
- $\vdash \paren {p \implies q} \implies \paren {\neg q \implies \neg p}$
Proof
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | 1 | $p \implies q$ | Assumption | (None) | ||
2 | 2 | $\neg q$ | Assumption | (None) | ||
3 | 1, 2 | $\neg p$ | Modus Tollendo Tollens (MTT) | 1, 2 | ||
4 | 1 | $\neg q \implies \neg p$ | Rule of Implication: $\implies \II$ | 2 – 3 | Assumption 2 has been discharged | |
5 | $\paren {p \implies q} \implies \paren {\neg q \implies \neg p}$ | Rule of Implication: $\implies \II$ | 1 – 4 | Assumption 1 has been discharged |
$\blacksquare$
Sources
- 1964: Donald Kalish and Richard Montague: Logic: Techniques of Formal Reasoning ... (previous) ... (next): $\text{I}$: 'NOT' and 'IF': $\S 5$: Theorem $\text{T13}$
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $2$: The Propositional Calculus $2$: $2$: Theorems and Derived Rules: Theorem $42$