Second Chebyshev Function is Increasing

From ProofWiki
Jump to navigation Jump to search

Theorem

The second Chebyshev function $\psi$ is increasing.


Proof

Let $x \ge y$.

Then:

\(\ds \map \psi y\) \(=\) \(\ds \sum_{k \mathop \ge 1} \sum_{p^k \mathop \le y} \ln p\) Definition of Second Chebyshev Function
\(\ds \) \(=\) \(\ds \sum_{k \mathop \ge 1} \paren {\sum_{p^k \mathop \le x} \ln p + \sum_{x \mathop < p^k \mathop \le y} \ln p}\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop \ge 1} \sum_{p^k \mathop \le x} \ln p + \sum_{k \mathop \ge 1} \sum_{x \mathop < p^k \mathop \le y} \ln p\)

From Logarithm is Strictly Increasing:

$\ln p \ge \ln 2 > 0$

So, we have:

$\ds \sum_{k \mathop \ge 1} \sum_{x \mathop < p^k \mathop \le y} \ln p \ge 0$

so:

\(\ds \sum_{k \mathop \ge 1} \sum_{p^k \mathop \le x} \ln p + \sum_{k \mathop \ge 1} \sum_{x \mathop < p^k \mathop \le y} \ln p\) \(\ge\) \(\ds \sum_{k \mathop \ge 1} \sum_{p^k \mathop \le x} \ln p\)
\(\ds \) \(=\) \(\ds \map \psi x\) Definition of Second Chebyshev Function

So if $x \le y$, then:

$\map \psi x \le \map \psi y$

so:

$\psi$ is increasing.

$\blacksquare$