Set has Rank/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.


Then $S$ has a rank.


Proof

The proof shall proceed by Epsilon Induction on $S$.


Suppose that all the elements $a \in S$ have a rank.

That is, $a \in \map V x$ for some $x$.

Let:

$\ds \map F a = \inf \set {x \in \On : a \in \map V x}$

be the rank of $a$.

Let:

$\ds y = \sup \set {\map F a : a \in S}$

be the least level of the Von Neumann Hierarchy containing all elements of $S$.


Then, for any $a \in S$:

\(\ds a\) \(\in\) \(\ds \map V {\map F a}\) Definition of $F$
\(\ds \leadsto \ \ \) \(\ds a\) \(\in\) \(\ds \map V y\) Definition of $y$
\(\ds \leadsto \ \ \) \(\ds S\) \(\subseteq\) \(\ds \map V y\) Definition of Subset
\(\ds \leadsto \ \ \) \(\ds S\) \(\in\) \(\ds \powerset {\map V y}\) Definition of Power Set
\(\ds \leadsto \ \ \) \(\ds S\) \(\in\) \(\ds \map V {y + 1}\) Definition of Von Neumann Hierarchy

Therefore $S \in \map V z$ for some ordinal $z = y + 1$.

Thus by Epsilon Induction every set has a rank.

$\blacksquare$


Sources