Set is Subset of Intersection of Supersets/Proof 1
Jump to navigation
Jump to search
Theorem
Let $S$, $T_1$ and $T_2$ be sets.
Let $S$ be a subset of both $T_1$ and $T_2$.
Then:
- $S \subseteq T_1 \cap T_2$
That is:
- $\paren {S \subseteq T_1} \land \paren {S \subseteq T_2} \implies S \subseteq \paren {T_1 \cap T_2}$
Proof
Let $S \subseteq T_1 \land S \subseteq T_2$.
Then:
\(\ds x \in S\) | \(\leadsto\) | \(\ds x \in T_1 \land x \in T_2\) | Definition of Subset | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x \in T_1 \cap T_2\) | Definition of Set Intersection | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds S \subseteq T_1 \cap T_2\) | Definition of Subset |
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 1.3$. Intersection: Example $13$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 7.2 \ \text{(i)}$: Unions and Intersections