Lagrange's Trigonometric Identities/Sine/Sine Form
< Lagrange's Trigonometric Identities | Sine(Redirected from Sine Form of Lagrange's Sine Identity)
Jump to navigation
Jump to search
Theorem
\(\ds \sum_{k \mathop = 0}^n \sin k x\) | \(=\) | \(\ds \sin 0 + \sin x + \sin 2 x + \sin 3 x + \cdots + \sin n x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin \frac {\paren {n + 1} x} 2 \sin \frac {n x} 2} {\sin \frac x 2}\) |
where $x$ is not an integer multiple of $2 \pi$.
Proof 1
By Werner Formula for Sine by Sine:
- $2 \sin \alpha \sin \beta = \map \cos {\alpha - \beta} - \map \cos {\alpha + \beta}$
Thus we establish the following sequence of identities:
\(\ds 2 \sin 0 \sin \frac x 2\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds 2 \sin x \sin \frac x 2\) | \(=\) | \(\ds \cos \frac x 2 - \cos \frac {3 x} 2\) | ||||||||||||
\(\ds 2 \sin 2 x \sin \frac x 2\) | \(=\) | \(\ds \cos \frac {3 x} 2 - \cos \frac {5 x} 2\) | ||||||||||||
\(\ds \) | \(\cdots\) | \(\ds \) | ||||||||||||
\(\ds 2 \sin n x \sin \frac x 2\) | \(=\) | \(\ds \cos \frac {\paren {2 n - 1} x} 2 - \cos \frac {\paren {2 n + 1} x} 2\) |
Summing the above:
\(\ds 2 \sin \frac x 2 \paren {\sum_{k \mathop = 0}^n \sin k x}\) | \(=\) | \(\ds \cos \frac x 2 - \cos \frac {\paren {2 n + 1} x} 2\) | Sums on right hand side form Telescoping Series | |||||||||||
\(\ds \) | \(=\) | \(\ds -2 \map \sin {\dfrac {\frac x 2 + \frac {\paren {2 n + 1} x} 2} 2} \map \sin {\dfrac {\frac x 2 - \frac {\paren {2 n + 1} x} 2} 2}\) | Cosine minus Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds -2 \sin \dfrac {\paren {n + 1} x} 2 \sin \dfrac {-n x} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \sin \dfrac {\paren {n + 1} x} 2 \sin \dfrac {n x} 2\) | Sine Function is Odd |
The result follows by dividing both sides by $2 \sin \dfrac x 2$.
It is noted that when $x$ is a multiple of $2 \pi$ then:
- $\sin \dfrac x 2 = 0$
leaving the right hand side undefined.
![]() | This needs considerable tedious hard slog to complete it. In particular: Explain what happens in that case To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Proof 2
Let $x$ be a real number that is not a integer multiple of $2 \pi$.
Let $k$ be a non-negative integer.
We have, from Euler's Formula:
- $\map \exp {i k x} = i \sin k x + \cos k x$
Summing from $k = 0$ to $k = n$, we have:
- $\ds \sum_{k \mathop = 0}^n \map \exp {i k x} = i \sum_{k \mathop = 0}^n \sin k x + \sum_{k \mathop = 0}^n \cos k x$
As $\sin k x$ and $\cos k x$ are both real for real $k, x$, we have:
\(\ds \sum_{k \mathop = 0}^n \sin k x\) | \(=\) | \(\ds \map \Im {\sum_{k \mathop = 0}^n \map \exp {i k x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \Im {\paren {i \sin \frac {n x} 2 + \cos \frac {n x} 2} \frac {\map \sin {\frac {\paren {n + 1} x} 2} } {\sin \frac x 2} }\) | Sum of $\map \exp {i k x}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin \frac {\paren {n + 1} x} 2 \sin \frac {n x} 2} {\sin \frac x 2}\) |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Miscellaneous Series: $19.40$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 21$: Series of Constants: Miscellaneous Series: $21.40.$