Sine of Half Angle for Spherical Triangles

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a spherical triangle on the surface of a sphere whose center is $O$.

Let the sides $a, b, c$ of $\triangle ABC$ be measured by the angles subtended at $O$, where $a, b, c$ are opposite $A, B, C$ respectively.


Then:

$\sin \dfrac A 2 = \sqrt {\dfrac {\map \sin {s - b} \, \map \sin {s - c} } {\sin b \sin c} }$

where $s = \dfrac {a + b + c} 2$.


Proof

\(\ds \cos a\) \(=\) \(\ds \cos b \cos c + \sin b \sin c \cos A\) Spherical Law of Cosines
\(\ds \) \(=\) \(\ds \cos b \cos c + \sin b \sin c \paren {1 - 2 \sin^2 \dfrac A 2}\) Double Angle Formula for Cosine: Corollary $2$
\(\ds \) \(=\) \(\ds \map \cos {b - c} - 2 \sin b \sin c \sin^2 \dfrac A 2\) Cosine of Difference
\(\ds \leadsto \ \ \) \(\ds \map \cos {b - c} - \cos a\) \(=\) \(\ds 2 \sin b \sin c \sin^2 \dfrac A 2\) rearranging
\(\ds \leadsto \ \ \) \(\ds 2 \sin \dfrac {a + \paren {b - c} } 2 \sin \dfrac {a - \paren {b - c} } 2\) \(=\) \(\ds 2 \sin b \sin c \sin^2 \dfrac A 2\) Cosine minus Cosine
\(\ds \leadsto \ \ \) \(\ds 2 \, \map \sin {\dfrac {a + b + c} 2 - c} \, \map \sin {\dfrac {a + b + c} 2 - b}\) \(=\) \(\ds 2 \sin b \sin c \sin^2 \dfrac A 2\)
\(\ds \leadsto \ \ \) \(\ds \map \sin {s - c} \, \map \sin {s - b}\) \(=\) \(\ds \sin b \sin c \sin^2 \dfrac A 2\) setting $s = \dfrac {a + b + c} 2$ and simplifying

The result follows.

$\blacksquare$


Also see



Sources