Sine of Integer Multiple of Argument/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z_{>0}$:

\(\ds \sin n \theta\) \(=\) \(\ds \cos^n \theta \paren {\dbinom n 1 \paren {\tan \theta} - \dbinom n 3 \paren {\tan \theta}^3 + \dbinom n 5 \paren {\tan \theta}^5 - \cdots}\)
\(\ds \) \(=\) \(\ds \cos^n \theta \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom n {2 k + 1} \paren {\tan^{2 k + 1} \theta}\)


Proof

By De Moivre's Formula:

$\cos n \theta + i \sin n \theta = \paren {\cos \theta + i \sin \theta}^n$

As $n \in \Z_{>0}$, we use the Binomial Theorem on the right hand side, resulting in:

$\ds \cos n \theta + i \sin n \theta = \sum_{k \mathop \ge 0} \binom n k \paren {\cos^{n - k} \theta} \paren {i \sin \theta}^k$

When $k$ is odd, the expression being summed is imaginary.

Equating the imaginary parts of both sides of the equation, replacing $k$ with $2 k + 1$ to make $k$ odd, gives:

\(\ds \sin n \theta\) \(=\) \(\ds \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom n {2 k + 1} \paren {\cos^{n - \paren {2 k + 1} } \theta} \paren {\sin^{2 k + 1} \theta}\)
\(\ds \) \(=\) \(\ds \cos^n \theta \sum_{k \mathop \ge 0} \paren {-1}^k \dbinom n {2 k + 1} \paren {\tan^{2 k + 1} \theta}\) factor out $\cos^n \theta$

$\blacksquare$


Examples

Sine of Quintuple Angle

$\sin 5 \theta = \cos^5 \theta \paren {5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}$


Sine of Sextuple Angle

$\map \sin {6 \theta } = \cos^6 \theta \paren {6 \tan \theta - 20 \tan^3 \theta + 6 \tan^5 \theta}$