Sine of Integer Multiple of Argument/Formulation 9

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z_{>1}$:

$\sin n \theta = \map \cos {\paren {n - 1} \theta} \paren {a_0 + \cfrac 1 {a_1 + \cfrac 1 {a_2 + \cfrac 1 {\ddots \cfrac {} {a_{n - r} } } } } }$

where:

$r = \begin {cases} 2 & : \text {$n$ is even} \\ 1 & : \text {$n$ is odd} \end {cases}$
$a_k = \begin {cases} 2 \sin \theta & : \text {$k$ is even} \\ -2 \sin \theta & : \text {$k$ is odd and $k < n - 1$} \\ \sin \theta & : k = n - 1 \end {cases}$


Proof

\(\ds \map \sin {n \theta}\) \(=\) \(\ds \paren {2 \sin \theta } \map \cos {\paren {n - 1 } \theta} + \map \sin {\paren {n - 2 } \theta}\) Line 1: Sine of Integer Multiple of Argument/Formulation 6
\(\ds \) \(=\) \(\ds \map \cos {\paren {n - 1 } \theta} \paren { \paren {2 \sin \theta } + \frac {\map \sin {\paren {n - 2 } \theta} } {\map \cos {\paren {n - 1 } \theta} } }\) Line 2: Factor out $\map \cos {\paren {n - 1 } \theta}$
\(\ds \) \(=\) \(\ds \map \cos {\paren {n - 1 } \theta} \paren { 2 \sin \theta + \cfrac 1 {\cfrac {\map \cos {\paren {n - 1 } \theta} } {\map \sin {\paren {n - 2 } \theta} } } }\) Line 3: Move the numerator to the denominator
\(\ds \) \(=\) \(\ds \map \cos {\paren {n - 1 } \theta} \paren { 2 \sin \theta + \cfrac 1 {\cfrac {\paren {-2 \sin \theta } \map \sin {\paren {n - 2 } \theta} + \map \cos {\paren {n - 3 } \theta} } {\map \sin {\paren {n - 2 } \theta} } } }\) Line 4: Cosine of Integer Multiple of Argument/Formulation 6
\(\ds \) \(=\) \(\ds \map \cos {\paren {n - 1 } \theta} \paren { 2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac {\map \cos {\paren {n - 3 } \theta} } {\map \sin {\paren {n - 2 } \theta} } } }\) Line 5: Simplify expression
\(\ds \) \(=\) \(\ds \map \cos {\paren {n - 1 } \theta} \paren { 2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac 1 {\cfrac {\map \sin {\paren {n - 2 } \theta} } {\map \cos {\paren {n - 3 } \theta} } } } }\) Line 6: Move the numerator to the denominator
\(\ds \) \(=\) \(\ds \map \cos {\paren {n - 1 } \theta} \paren { 2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac 1 {\cfrac {\paren {2 \sin \theta } \map \cos {\paren {n - 3 } \theta} + \map \sin {\paren {n - 4 } \theta} } {\map \cos {\paren {n - 3} \theta} } } } }\) Line 7: Sine of Integer Multiple of Argument/Formulation 6
\(\ds \) \(=\) \(\ds \map \cos {\paren {n - 1 } \theta} \paren { 2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac {\map \sin {\paren {n - 4 } \theta} } {\map \cos {\paren {n - 3} \theta} } } } }\) Line 8: Simplify expression


By comparing Line 2 to Line 8, we see that:




\(\ds \frac {\map \sin {\paren {n - \paren {2 k} } \theta} } {\map \cos {\paren {n - \paren {2 k - 1 } } \theta} }\) \(=\) \(\ds \paren {\cfrac 1 {-2 \sin \theta + \cfrac 1 {2 \sin \theta + \cfrac {\map \sin {\paren {n - 2 \paren {k + 1 } } \theta} } {\map \cos {\paren {n - \paren {2 \paren {k + 1} - 1} } \theta} } } } }\)

Therefore, the terminal denominator will be:

\(\ds \) \(=\) \(\ds \paren {2 \sin \theta} + \frac {\map \sin {\paren {n - \paren {2k } } \theta} } {\map \cos {\paren {n - \paren {2k - 1 } } \theta} }\)

Assume $n$ even $n = 2k$

\(\ds \) \(=\) \(\ds \paren {2 \sin \theta} + \frac {\map \sin {\paren {2k - \paren {2k } } \theta} } {\map \cos {\paren {2k - \paren {2k - 1 } } \theta} }\)
\(\ds \) \(=\) \(\ds \paren {2 \sin \theta} + \frac {\map \sin {0} } {\map \cos {\theta} }\)
\(\ds \) \(=\) \(\ds \paren {2 \sin \theta}\)

Assume $n$ odd $n = 2k - 1$

\(\ds \) \(=\) \(\ds \paren {2 \sin \theta} + \frac {\map \sin {\paren {2k - 1 - \paren {2k } } \theta} } {\map \cos {\paren {2k - 1 - \paren {2k - 1 } } \theta} }\)
\(\ds \) \(=\) \(\ds \paren {2 \sin \theta} + \frac {\map \sin {-\theta} } {\map \cos 0}\)
\(\ds \) \(=\) \(\ds \paren {2 \sin \theta} - \frac {\map \sin {\theta} } {\map \cos 0}\)
\(\ds \) \(=\) \(\ds \paren {\sin \theta}\)


Therefore:

$\sin n \theta = \map \cos {\paren {n - 1} \theta} \paren {a_0 + \cfrac 1 {a_1 + \cfrac 1 {a_2 + \cfrac 1 {\ddots \cfrac {} {a_{n - r} } } } } }$

where:

$r = \begin {cases} 2 & : \text {$n$ is even} \\ 1 & : \text {$n$ is odd} \end {cases}$
$a_k = \begin {cases} 2 \sin \theta & : \text {$k$ is even} \\ -2 \sin \theta & : \text {$k$ is odd and $k < n - 1$} \\ \sin \theta & : k = n - 1 \end {cases}$

$\blacksquare$


Examples

Sine of Quintuple Angle

$\map \sin {5 \theta } = \map \cos {4 \theta} \paren { 2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac 1 {2\sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac 1 {\sin \theta }} }} }$


Sine of Sextuple Angle

$\map \sin {6 \theta } = \map \cos {5 \theta} \paren { 2 \sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac 1 {2\sin \theta + \cfrac 1 {-2 \sin \theta + \cfrac 1 {2\sin \theta }} }} }$