Solution by Integrating Factor/Examples/y' - 3y = sin x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The linear first order ODE:

$\dfrac {\d y} {\d x} - 3 y = \sin x$

has the general solution:

$y = \dfrac 1 {10} \paren {3 \sin x - \cos x} + C e^{3 x}$


Proof

This is a linear first order ODE in the form:

$\dfrac {\d y} {\d x} + \map P x y = \map Q x$

where:

$\map P x y = -3 y$
$\map Q x = \sin x$


Thus:

\(\ds \int \map P x \rd x\) \(=\) \(\ds \int -3 \rd x\)
\(\ds \) \(=\) \(\ds -3 x\)
\(\ds \leadsto \ \ \) \(\ds e^{\int P \rd x}\) \(=\) \(\ds e^{-3 x}\)


Thus from Solution by Integrating Factor:

\(\ds \dfrac {\d} {\d x} \paren {e^{-3 x} y}\) \(=\) \(\ds e^{-3 x} \sin x\)
\(\ds \leadsto \ \ \) \(\ds e^{-3 x} y\) \(=\) \(\ds \int e^{-3 x} \sin x \rd x + C\)
\(\ds \) \(=\) \(\ds \frac {e^{3 x} \paren {3 \sin x - \cos x} } {3^2 + 1^2} + C\) Primitive of $e^{a x} \sin b x$
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac 1 {10} \paren {3 \sin x - \cos x} + C e^{3 x}\)

$\blacksquare$