Space of Square Summable Mappings is Vector Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\GF$ be a subfield of $\C$.

Let $I$ be a set.

Let $\map {\ell^2} I$ be the space of square summable mappings over $I$.


Then $\map {\ell^2} I$ is a vector space.


Proof

By definition, $\map {\ell^2} I$ is a subset of the vector space $\GF^I$ of all mappings $f: I \to \GF$.

Let us apply the One-Step Vector Subspace Test.


Thus, let $f, g \in \map {\ell^2} I$ and $\lambda \in \GF$.

Then we must show that $f + \lambda g: I \to \GF$ is square summable.


First, note that:

$\set{ i \in I: \map f i + \lambda \map g i \ne 0 } \subseteq \set{ i \in I: \map f i \ne 0 } \cup \set{ i \in I: \map g i \ne 0 }$

By Finite Union of Countable Sets is Countable and Subset of Countable Set is Countable, it follows that:

$\set{ i \in I: \map f i + \lambda \map g i \ne 0 }$

is countable.


Next:

\(\ds \sum_{i \mathop \in I} \cmod{ \map f i + \lambda \map g i }^2\) \(\le\) \(\ds \sum_{i \mathop \in I} \cmod{ \map f i }^2 + \cmod{\lambda}^2 \cmod{ \map g i }^2\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in I} \cmod{ \map f i }^2 + \cmod{\lambda}^2 \sum_{i \mathop \in I} \cmod{ \map g i }^2\)
\(\ds \) \(<\) \(\ds \infty\)

so that $f + \lambda g$ is square summable.


Hence the result by the One-Step Vector Subspace Test.

$\blacksquare$