Spectrum of Self-Adjoint Bounded Linear Operator is Real

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\HH, \innerprod \cdot \cdot}$ be a Hilbert space over $\C$.

Let $T : \HH \to \HH$ be a bounded self-adjoint operator.

Let $\map \sigma T$ be the spectrum of $T$.


Then:

$\map \sigma T \subseteq \R$


Proof 1

This follows from:

Spectrum of Self-Adjoint Densely-Defined Linear Operator is Real and Closed
Spectrum of Bounded Linear Operator equal to Spectrum as Densely-Defined Linear Operator

$\blacksquare$


Proof 2

Let $\lambda := a + i b \in \C \setminus \R$.

Note that $b \ne 0$.


For all $\phi \in \HH$:

\(\ds \norm {\paren {T - \lambda I} \phi}^2\) \(=\) \(\ds \norm {\paren {T - a I} \phi}^2 + b^2 \norm {\phi}^2\) as $\Re \innerprod {\paren {T - a I} \phi} {- i b \phi} = 0$
\(\text {(1)}: \quad\) \(\ds \) \(\ge\) \(\ds b^2 \norm {\phi}^2\)

In view of $(1)$, both $T - \lambda I$ and $T - \overline \lambda I$ are injective.


Moreover:

\(\ds \paren {\Img {T - \lambda I} }^\perp\) \(=\) \(\ds \paren {\Img { \paren {T - \overline \lambda I}^\ast } }^\perp\) as $T - \lambda I = \paren {T - \overline \lambda I}^\ast$
\(\ds \) \(=\) \(\ds \ker \paren {T - \overline \lambda I}\) Kernel of Linear Transformation is Orthocomplement of Image of Adjoint
\(\ds \) \(=\) \(\ds \set 0\) as $T - \overline \lambda I$ is injective

By Linear Subspace Dense iff Zero Orthocomplement, $\Img {T - \lambda I}$ is dense in $\HH$.

Let $\phi \in \HH$.

Then there exists an $\sequence {\psi _n} \subseteq \HH$ such that:

$\paren {T - \lambda I} \psi_n \to \phi$

By $(1)$ there exists a $\psi \in \HH$ such that:

$\psi_n \to \psi$

and:

$\paren {T - \lambda I} \psi = \phi$

Thus $T - \lambda I$ is surjective.

In addition, by $(1)$ we have:

$\norm \psi \le \size b^{-1} \norm \phi$

Therefore $T - \lambda I$ is invertible such that:

$\norm {\paren {T - \lambda I}^{-1} } \le \size b^{-1}$


That is, $\lambda \not \in \map \sigma T$.

$\blacksquare$