Square Root of Complex Number in Cartesian Form/Examples/-15-8i

From ProofWiki
Jump to navigation Jump to search

Example of Square Root of Complex Number in Cartesian Form

$\sqrt {-15 - 8 i} = \pm \paren {1 - 4 i}$


Proof 1

We have that:

$-15 - 8 i = 17 \map \cis {\theta + 2 k \pi}$

where:

$\cos \theta = -\dfrac {15} {17}$
$\sin \theta = -\dfrac 8 {17}$


Then the square roots of $-15 - 8 i$ are:

\(\text {(1)}: \quad\) \(\ds z_1\) \(=\) \(\ds \sqrt {17} \cis \dfrac \theta 2\)
\(\text {(2)}: \quad\) \(\ds z_2\) \(=\) \(\ds \sqrt {17} \, \map \cis {\dfrac \theta 2 + \pi}\)
\(\ds \) \(=\) \(\ds -\sqrt {17} \cis \dfrac \theta 2\)


We have that:

\(\ds \cos \dfrac \theta 2\) \(=\) \(\ds \pm \sqrt {\dfrac {1 + \cos \theta} 2}\)
\(\ds \) \(=\) \(\ds \pm \sqrt {\dfrac {1 - 15 / 17} 2}\)
\(\ds \) \(=\) \(\ds \pm \dfrac 1 {\sqrt {17} }\)


and:

\(\ds \sin \dfrac \theta 2\) \(=\) \(\ds \pm \sqrt {\dfrac {1 - \cos \theta} 2}\)
\(\ds \) \(=\) \(\ds \pm \sqrt {\dfrac {1 + 15 / 17} 2}\)
\(\ds \) \(=\) \(\ds \pm \dfrac 4 {\sqrt {17} }\)


As $\theta$ is in the third quadrant, $\dfrac \theta 2$ is in the second quadrant.

Hence:

\(\ds \cos \dfrac \theta 2\) \(=\) \(\ds -\dfrac 1 {\sqrt {17} }\)
\(\ds \sin \dfrac \theta 2\) \(=\) \(\ds \dfrac 4 {\sqrt {17} }\)


Hence from $(1)$ and $(2)$:

\(\ds z_1\) \(=\) \(\ds -1 + 4 i\)
\(\ds z_2\) \(=\) \(\ds 1 - 4 i\)

$\blacksquare$


Proof 2

Let the required square roots be $p = i q$ for real $p$ and $q$.

Then:

\(\ds \paren {p + i q}^2\) \(=\) \(\ds p^2 - q^2 + 2 p q i\)
\(\ds \) \(=\) \(\ds -15 + 8 i\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds p^2 - q^2\) \(=\) \(\ds -15\)
\(\text {(2)}: \quad\) \(\ds p q\) \(=\) \(\ds 4\)
\(\ds \leadsto \ \ \) \(\ds p^2 - \dfrac {16} p^2\) \(=\) \(\ds -15\) substituting $q = -\dfrac 4 p$ from $(2)$ into $(1)$
\(\ds \leadsto \ \ \) \(\ds p^4 + 15 p^2 - 16\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {p^2 + 16} \paren {p^2 - 1}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds p\) \(=\) \(\ds \pm 1\) as $p$ is real

The result follows by substituting $+1$ and $-1$ into $2$, in turn.

$\blacksquare$