Square Root of Number Plus Square Root/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be (strictly) positive real numbers such that $a^2 - b > 0$.

Then:

$\ds \sqrt {a + \sqrt b} = \sqrt {\dfrac {a + \sqrt {a^2 - b} } 2} + \sqrt {\dfrac {a - \sqrt {a^2 - b} } 2}$


Proof

\(\ds \paren {\sqrt {\dfrac {a + \sqrt {a^2 - b} } 2} + \sqrt {\dfrac {a - \sqrt {a^2 - b} } 2} }^2\) \(=\) \(\ds \dfrac {a + \sqrt {a^2 - b} } 2 + \dfrac {a - \sqrt {a^2 - b} } 2 + 2 \sqrt {\dfrac {a + \sqrt {a^2 - b} } 2} \sqrt {\dfrac {a - \sqrt {a^2 - b} } 2}\) multiplying out
\(\ds \) \(=\) \(\ds a + \sqrt {a + \sqrt {a^2 - b} } \sqrt {a - \sqrt {a^2 - b} }\) simplifying
\(\ds \) \(=\) \(\ds a + \sqrt {a^2 - \paren {a^2 - b} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds a + \sqrt b\) simplifying
\(\ds \leadsto \ \ \) \(\ds \sqrt {\dfrac {a + \sqrt {a^2 - b} } 2} + \sqrt {\dfrac {a - \sqrt {a^2 - b} } 2}\) \(=\) \(\ds \sqrt {a + \sqrt b}\) taking square root of both sides




$\blacksquare$