Square of Difference/Algebraic Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\forall x, y \in \R: \paren {x - y}^2 = x^2 - 2 x y + y^2$


Proof

\(\ds \paren {x - y}^2 =\) \(=\) \(\ds \paren {x - y} \cdot \paren {x - y}\)
\(\ds \) \(=\) \(\ds x \cdot \paren {x - y} - y \cdot \paren {x - y}\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x \cdot x - x \cdot y - y \cdot x + y \cdot y\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds x^2 - 2xy + y^2\)

$\blacksquare$