Square of Inner Product Norm of Sum
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \innerprod \cdot \cdot}$ be an inner product space.
Let $\norm {\, \cdot \,}$ be the inner product norm.
Let $x, y \in X$.
Then, we have:
- $\norm {x + y}^2 = \norm x^2 + 2 \map \Re {\innerprod x y} + \norm y^2$
Proof
\(\ds \norm {x + y}^2\) | \(=\) | \(\ds \innerprod {x + y} {x + y}\) | Definition of Inner Product Norm | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod x x + \innerprod y x + \innerprod x y + \innerprod y y\) | Inner Product is Sesquilinear | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm x^2 + \overline {\innerprod x y} + \innerprod x y + \norm y^2\) | Definition of Inner Product Norm, conjugate symmetry of inner product | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm x^2 + 2 \map \Re {\innerprod x y} + \norm y^2\) | Sum of Complex Number with Conjugate |
$\blacksquare$