Square of Inner Product Norm of Sum

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \innerprod \cdot \cdot}$ be an inner product space.

Let $\norm {\, \cdot \,}$ be the inner product norm.

Let $x, y \in X$.


Then, we have:

$\norm {x + y}^2 = \norm x^2 + 2 \map \Re {\innerprod x y} + \norm y^2$


Proof

\(\ds \norm {x + y}^2\) \(=\) \(\ds \innerprod {x + y} {x + y}\) Definition of Inner Product Norm
\(\ds \) \(=\) \(\ds \innerprod x x + \innerprod y x + \innerprod x y + \innerprod y y\) Inner Product is Sesquilinear
\(\ds \) \(=\) \(\ds \norm x^2 + \overline {\innerprod x y} + \innerprod x y + \norm y^2\) Definition of Inner Product Norm, conjugate symmetry of inner product
\(\ds \) \(=\) \(\ds \norm x^2 + 2 \map \Re {\innerprod x y} + \norm y^2\) Sum of Complex Number with Conjugate

$\blacksquare$