Square of Sample Correlation Coefficient is no greater than 1

From ProofWiki
Jump to navigation Jump to search

Definition

Let $S$ be a set of paired observations of a statistic from a population.

The sample correlation coefficient $r$ of $S$ satisfies the inequality:

$r^2 \le 1$


Proof

Let $\ds \bar x = \frac 1 n \sum_{i \mathop = 1}^n x_i$ and $\ds \bar y = \frac 1 n \sum_{i \mathop = 1}^n y_i$.

\(\ds r^2\) \(=\) \(\ds \frac {\paren {s_{x y} }^2} {s_{xx} s_{yy} }\) Definition of Sample Correlation Coefficient
\(\ds \) \(=\) \(\ds \frac {\ds \paren {\sum_{i \mathop = 1}^n \paren {x_i - \bar x} \paren {y_i - \bar y} }^2} {\ds \paren {\sum_{i \mathop = 1}^n \paren {x_i - \bar x}^2} \paren {\sum_{i \mathop = 1}^n \paren {y_i - \bar y}^2} }\)
\(\ds \) \(\le\) \(\ds \frac {\ds \paren {\sum_{i \mathop = 1}^n \paren {x_i - \bar x} \paren {y_i - \bar y} }^2} {\ds \paren {\sum_{i \mathop = 1}^n \paren {x_i - \bar x} \paren {y_i - \bar y} }^2}\) Cauchy's Inequality
\(\ds \) \(=\) \(\ds 1\)

$\blacksquare$


Sources