Square of Sum of Vectors

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf a$ and $\mathbf b$ be vector quantities.

Then:

$\paren {\mathbf a + \mathbf b}^2 = \mathbf a^2 + 2 \mathbf a \cdot \mathbf b + \mathbf b^2$

where:

$\mathbf a \cdot \mathbf b$ denotes dot product
$\mathbf a^2$ denotes the square of $\mathbf a$, that is: $\mathbf a \cdot \mathbf a$.


Proof

\(\ds \paren {\mathbf a + \mathbf b}^2\) \(=\) \(\ds \paren {\mathbf a + \mathbf b} \cdot \paren {\mathbf a + \mathbf b}\) Definition of Square of Vector Quantity
\(\ds \) \(=\) \(\ds \mathbf a \cdot \paren {\mathbf a + \mathbf b} + \mathbf b \cdot \paren {\mathbf a + \mathbf b}\) Dot Product Distributes over Addition
\(\ds \) \(=\) \(\ds \mathbf a \cdot \mathbf a + \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf a + \mathbf b \cdot \mathbf b\) Dot Product Distributes over Addition
\(\ds \) \(=\) \(\ds \mathbf a \cdot \mathbf a + 2 \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b\) Dot Product Operator is Commutative
\(\ds \) \(=\) \(\ds \mathbf a^2 + 2 \mathbf a \cdot \mathbf b + \mathbf b^2\) Definition of Square of Vector Quantity

$\blacksquare$


Also see


Sources