Square of Triangular Numbers as Sum of Triangular Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

${T_n}^2 = T_n + T_{n - 1} T_{n + 1}$

where $T_n$ denotes the $n$th triangular number.


Proof

\(\ds T_n + T_{n - 1} T_{n + 1}\) \(=\) \(\ds \frac {n \paren {n + 1} } 2 + \paren {\frac {\paren {n - 1} n} 2 \frac {\paren {n + 1} \paren {n + 2} } 2}\) Closed Form for Triangular Numbers
\(\ds \) \(=\) \(\ds \frac {2 n^2 + 2 n + \paren {n^2 - n} \paren {n^2 + 3 n + 2} } 4\)
\(\ds \) \(=\) \(\ds \frac {2 n^2 + 2 n + n^4 - n^3 + 3 n^3 - 3 n^2 + 2 n^2 - 2 n} 4\)
\(\ds \) \(=\) \(\ds \frac {n^4 + 2 n^3 + n^2} 4\)
\(\ds \) \(=\) \(\ds \paren {\frac {n \paren {n + 1} } 2}^2\)
\(\ds \) \(=\) \(\ds {T_n}^2\) Closed Form for Triangular Numbers

$\blacksquare$


Sources